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ABSTRACT
In this paper, we provide a dissipative Hamiltonian (DH) characterization for the set
of matrices whose eigenvalues belong to a given LMI region. This characterization is
a generalization of that of Choudhary et al. (Numer. Linear Algebra Appl, 2020) to
any LMI region. It can be used in various contexts, which we illustrate on the nearest
Ω-stable matrix problem: given an LMI region Ω ⊆ C and a matrix A ∈ Rn×n, find
the nearest matrix to A whose eigenvalues belong to Ω. Finally, we generalize our
characterization to more general regions that can be expressed using LMIs involving
complex matrices.
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1. Introduction

In this paper, we study matrices A ∈ Rn×n whose eigenvalues belong to a subset of
the complex plane, Ω ⊆ C, such matrices are called Ω-stable.

Definition 1. (Ω-stability) For Ω ⊆ C, the matrix A ∈ Rn×n is said to be Ω-stable if
every eigenvalue of A lie inside the region Ω.

The two most famous examples of Ω-stable matrices are Hurwitz stable matrices
for which Ω = {z ∈ C : Re z < 0}, and Schur stable matrices for which Ω = {z ∈
C : |z| < 1}. Hurwitz stable matrices play a significant role in the study of linear
time-invariant (LTI) systems of the form

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),
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where, for all t ∈ R, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rp×n. In fact, such a system is stable if A is Hurwitz stable. Moreover, the
transient response of such a system is directly related to the location of its poles [4] in
the complex plane. The poles in a specific region in the complex plane can bound the
maximum overshoot, the frequency of oscillatory modes, the delay time, the rise time,
and the settling time. The problem of locating all the closed-loop poles of a controlled
system inside a specific region Ω ⊆ C is known as the Ω-pole placement problem and
has appeared in several applications [1,4,5,16,29,30].

The most practical regions for control purposes include α-stability regions, vertical
strips, disks, conic sectors, horizontal strips, ellipses, parabolas, hyperbolic sectors,
and their intersections. For example, the set S(α, r, θ) of complex number x+ iy such
that

x < −α < 0, |x+ iy| < r, and tan(θ)x < −|y|,

is the intersection of the vertical half plane x < −α, the disc of radius r with center
at (0, 0), and the conic sector tan(θ)x < −|y| that makes an angle θ with the negative
real axis and vertex at (0, 0). The poles inside this region ensure a minimum decay
rate, a maximum damping ratio and a maximum undamped natural frequency [4]. As
mentioned in [29], for LTI systems, a parabolic region is directly related to the maxi-
mum percent overshoot and the rise time. Therefore assigning the poles of the filtering
matrix inside a prescribed parabolic region would guarantee satisfactory transient be-
havior of the filtering dynamics. Pole placement techniques can be used to assign the
closed loop poles within an elliptic region in the complex plane to control the frequency-
domain bifurcation in forced Duffing oscillators [9]. As indicated in [18], if the poles
are located in a region that is an intersection of the conic sector tan(π/4)x < −|y| and
the vertical half plane x < −α, then the responses converge to the steady state at an
appropriate speed and no objectionable vibrating modes appear on the responses. This
region could be approximated by a hyperbolic region x2− y2 = m2 for an appropriate
m.

For these reasons, characterizing Ω-stable matrices is an important topic in numer-
ical linear algebra and control. In this paper, we focus on regions of the complex plane
that can be expressed by linear matrix inequalities (LMIs). Such sets are referred to
as LMI regions [4] and defined as follows.

Definition 2 (LMI Region, [4]). A subset Ω ⊆ C is called an LMI region if there
exists a symmetric matrix B ∈ Rs×s and a matrix C ∈ Rs×s such that

Ω = {z ∈ C : fΩ(z) ≺ 0} , (1.1)

where

fΩ : C 7→ Hs,s is given by z 7→ fΩ(z) := B + zC + zCT , (1.2)

where Hs,s is the set of Hermitian matrices with real eigenvalues, that is, Hs,s = {X ∈
Cs×s : X = X∗} with X∗ the conjugate transpose of X, and for X ∈ Hs,s, X ≺ 0
means that X is negative definite, that is, its eigenvalues are negative.

The function fΩ(z) is called the characteristic function of the LMI region Ω, and
s is called the order of fΩ(z). The characteristic function of an LMI region is not
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unique [20]. Since fΩ(z) = (fΩ(z))
T , any LMI region is symmetric along the real axis.

An LMI region is convex, and so is the intersection of two or more LMI regions.
Due to the strict inequality “≺” in (1.1), the LMI regions are open. Furthermore, the
LMI regions are invariant under congruence transformations. We refer to [20] for other
topological and geometrical properties of the LMI regions. A large number of subsets in
the complex plane can be expressed as LMI regions; for example, conic sectors, vertical
half-planes, vertical strips, discs, horizontal strips, ellipses, parabolas, and hyperbolic
sectors; see [3] and Section 3. The set of LMI regions is dense in the set of convex
regions symmetric to the real axis, which are relevant for control systems [3,4].

In [12], authors characterized Ω-stable matrices using the so-called dissipative
Hamiltonian (DH) matrices.

Definition 3 (DH matrix). A matrix A ∈ Rn×n is said to be a DH matrix if A =
(J −R)Q for some J,R,Q ∈ Rn×n such that JT = −J , R ⪰ 0, and Q ≻ 0.

A DHmatrix is always Hurwitz stable, that is, all its eigenvalues are in the left half of
the complex plane [12]. The term DH is inspired by the DH systems in which the state
matrix has the form A = (J−R)Q, where JT = −J is the structure matrix describing
the flux among energy storage elements, R is a positive semidefinite matrix describing
the energy dissipation in the system, and Q is a positive definite matrix that describes
the energy of the system [27,28]. By replacing the constraint on R, namely R ⪰ 0,
by other LMI constraints on (J,R,Q), DH matrices can represent different types of
Ω-stable matrices. This was studied in [6] where Ω-stable matrices were written as DH
matrices where Ω could be vertical strips, disks, conic sectors, and their intersection;
see the next section for more details. This generalizes the results of Duan and Patton
to the case of Ω-stable matrices [8]. An application of these characterizations is to solve
the nearest Ω-stable matrix problem. For example, in system identification, one needs
to identify a Ω-stable system from observations [24]. In fact, sometimes numerical or
modelling errors or approximation processes may produce an unstable system in place
of a stable one. The unstable system then has to be approximated by a nearby stable
system without perturbing its entries too much. More precisely, for a region Ω ∈ C
and a matrix A ∈ Rn×n, this requires to solve the following optimization problem

inf
X∈SΩ

∥A−X∥2F , (1.3)

where ∥ · ∥F stands for the Frobenius norm and SΩ is the set of all Ω-stable ma-
trices. The DH characterization of stable matrices has been proven very effective in
solving several nearness problems for LTI control systems. For example, distance to Ω-
stability [6,12,22], nearest admissible descriptor system problem [11], distance to pas-
sivity [13], minimal-norm-static-state feedback problem [14], and learning data-driven
stable Koopman operators [21]. This DH characterization was also used recently to
design an optimization-based algorithm for parametric model order reduction of LTI
dynamical systems [26]. We also refer to [2] for the characterization of subsets of stable
matrices.

Contribution and outline of the paper This paper is organized as follows. In
Section 2, for a given LMI region Ω ⊆ C, we characterize the set of all Ω-stable
matrices as DH matrices of the form A = (J − R)Q with LMI constraints on the
triplet (J,R,Q) ∈ (Rn×n)3. This characterization generalizes the work on [6] that only
considered three types of LMI regions, namely conic sectors, vertical strips and disks.
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In Section 3, we provide several examples of such LMI regions, including parabolas,
ellipsoids, hyperbolas and horizontal strips; this is the first time DH characterizations
of such regions are given via LMIs on the triplet (J,R,Q). In Section 4, we illustrate
the use of these characterizations to solve the nearest Ω-stable matrix problem (1.3).
Finally, in Section 5, we extend our characterizations of LMI regions for complex
matrices, where the set Ω is not necessarily symmetric with respect to the real line.

Notation Throughout the paper, XT and ∥X∥ stand for the transpose and the spec-
tral norm of a real matrix X, respectively. We write X ≻ 0 (X ≺ 0) and X ⪰ 0
(X ⪯ 0) if X is symmetric and positive definite (negative definite) or positive semidef-
inite (negative semidefinite), respectively. By Im we denote the identity matrix of size
m×m. The Kronecker product is represented by ⊗ and we refer to [17] for the standard
properties of the Kronecker product. The set of n× n Hermitian matrices is denoted
by Hn,n.

2. DH characterization of matrices with eigenvalues in generic LMI
regions

In this section, we consider matrices with eigenvalues in some generic LMI regions,
and for them, we provide a parametrization using the DH matrices. This will allow us
for example in Section 4 to use standard optimization tools to find a nearby matrix
to a given matrix with eigenvalues all in the given LMI region.

The following result from [4] is crucial for our DH formulation of the set of Ω-stable
matrices, where Ω is an LMI region.

Theorem 1. [4, Theorem 2.2] Let Ω be an LMI region given by (1.1) and let A ∈
Rn×n. Then A is Ω-stable if and only if there exists a symmetric matrix X ∈ Rn×n

such that X ≻ 0 and

MΩ(A,X) := B ⊗X + C ⊗ (AX) + CT ⊗ (AX)T ≺ 0.

Let us illustrate Theorem 1 on the two most well-known examples.

1) For Hurwitz stability with Ω = {z ∈ C : Re z < 0}, we simply take B = 0
and C = 1 to obtain fΩ(z) = Re z. This choice leads to the classical Lyapunov
stability criterion, namely there exists X ≻ 0 such that AX +XAT ≺ 0.

2) For Schur stability with Ω = {z ∈ C : |z| < 1}, we take B = −
(
1 0
0 1

)
and

C =
(
0 1
0 0

)
, so that

fΩ(z) =

[
−1 z
z −1

]
=

[
−1 0
0 −1

]
︸ ︷︷ ︸

=B

+z

[
0 1
0 0

]
︸ ︷︷ ︸

=C

+z̄

[
0 0
1 0

]
︸ ︷︷ ︸

=CT

≺ 0.

This choice leads to the well-known condition for discrete-time stability: there

exists X ≻ 0 such that

[
−X AX
XAT −X

]
≺ 0, which is equivalent, using the Schur

complement, to X −AXAT ≻ 0.

To characterize matrices with eigenvalues in any LMI region, we rephrase the defi-
nition of a DH matrix by relaxing the semidefinite constraint on R and obtaining the
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following characterization of Ω-stable matrices.

Theorem 2. Let Ω ⊆ C be an LMI region defined by (1.1) and let B,C ∈ Rs×s be
the corresponding matrices as given in (1.2). Consider a matrix A ∈ Rn×n. Then A
is Ω-stable if and only if A = (J −R)Q for some J,R,Q ∈ Rn×n such that JT = −J ,
RT = R, Q ≻ 0, and

MΩ(J,R,Q) := B ⊗Q−1 + (C − CT )⊗ J − (C + CT )⊗R ≺ 0. (2.1)

Proof. First suppose that A = (J−R)Q for some J,R,Q ∈ Rn×n such that JT = −J ,
RT = R, Q ≻ 0, and MΩ(J,R,Q) ≺ 0. Let λ ∈ C be an eigenvalue of A and
v ∈ Cn \ {0} be the corresponding eigenvector, that is,

Av = (J −R)Qv = λv.

This implies that

v∗Q(J −R)Qv = λv∗Qv and − v∗Q(J +R)Qv = λv∗Qv. (2.2)

Thus(
B + λC + λCT

)
v∗Qv

= B ⊗ v∗Qv + C ⊗ λv∗Qv + CT ⊗ λv∗Qv

= B ⊗ v∗Qv + C ⊗ v∗Q(J −R)Qv − CT ⊗ v∗Q(J +R)Qv (∵ from (2.2))

= (I ⊗Qv)∗
(
B ⊗Q−1 + (C − CT )⊗ J − (C + CT )⊗R

)
(I ⊗Qv)

= (I ⊗Qv)∗MΩ(J,R,Q)(I ⊗Qv)

≺ 0,

sinceMΩ(J,R,Q) ≺ 0 and Q ≻ 0. This implies that (B+λC +λCT ) ≺ 0, and hence
from (1.1) λ ∈ Ω. Conversely, let A be Ω-stable. Then by Theorem 1, there exists
X ≻ 0 such that

MΩ(A,X) = B ⊗X + C ⊗ (AX) + CT ⊗ (AX)T ≺ 0. (2.3)

By setting

Q = X−1, R = −(AX) + (AX)T

2
, and J =

(AX)− (AX)T

2
,

we have JT = −J , RT = R, and Q ≻ 0 so that A = (J −R)Q. Also, in view of (2.3),
we have that

MΩ(J,R,Q) = B ⊗Q−1 + (C − CT )⊗ J − (C + CT )⊗R

= B ⊗X + (C − CT )⊗ (AX)− (AX)T

2
+ (C + CT )⊗ (AX) + (AX)T

2

= B ⊗X + C ⊗ (AX) + CT ⊗ (AX)T

≺ 0.

This completes the proof.
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Remark 1. The eigenvalues of a DH matrix with positive (resp. negative) semidefi-
nite matrix R all lie in the left (resp. right) half of the complex plane. Therefore an
extra semidefiniteness constraint on R, on top of the condition (2.1), ensures that the
eigenvalues of A = (J − R)Q in the Ω-region are also within the left (resp. left) half
of the complex plane. We refer to [6,12] for more on the spectral properties of DH
matrices.

If we apply Theorem 2 to Hurwitz and Schur stable matrices, we obtain the following
DH characterizations:

1) For Hurwitz stability, plugging B = 0 and C = 1 in (2.1) implies that A =
(J − R)Q such that JT = −J , RT = R, Q ≻ 0 is Hurwitz stable if and only if
R ≻ 0, as shown in [12].

2) For Schur stability, plugging B = −
(
1 0
0 1

)
and C =

(
0 1
0 0

)
in (2.1) implies that

A = (J −R)Q such that JT = −J , RT = R, Q ≻ 0 is Schur stable if and only if[
Q−1 −J +R
J +R Q−1

]
≻ 0,

as shown in [6].

In the next section, we apply Theorem 2 in the same way for other LMI regions.

3. Special LMI regions and DH parametrization

We have provided in Theorem 2 the DH parametrization of matrices with eigenvalues
inside a generic LMI region. As a corollary of which, in this section, we provide LMI
constraints on the matrix triplets (J,R,Q) of a DH matrix for some particular regions.
In fact, as soon as an LMI region is defined via the matrices B and C, see Definition 2,
we can provide its corresponding DH characterization in terms of DH matrices. In this
section, we provide the following examples: left and right conic sectors, disks centered
on the real line, vertical left and right halfplanes, ellipsoid centred on the real line,
left and right parabolic regions centred on the real line, left and right hyperbolas with
vertices on the real line, and horizontal strip. As mentioned in Section 1, these are
the most practical regions for control purposes. By following [3, Table III], we first
define these regions as LMI regions for s = 2, and, in Table 3.1, we provide the DH
characterization of matrices with eigenvalues in these regions. Here are the considered
LMI regions:

• Conic sector: the left conic sector region of parameters a, θ ∈ R with 0 ≤ θ ≤
π/2, denoted by ΩCL

(a, θ), is defined as

ΩCL
(a, θ) :=

{
x+ iy ∈ C

∣∣ sin(θ)(x− a) < cos(θ)y < − sin(θ)(x− a), x ≤ a
}
.

The conic sector ΩCL
(a, θ) can be characterized in form of (1.1) of an LMI region

with matrices

B =

[
−a sin(θ) 0

0 −a sin(θ)

]
and C =

1

2

[
sin(θ) cos(θ)
− cos(θ) sin(θ)

]
.

Similarly, we can define the right conic sector region ΩCR
(a, θ).
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• Disks centred on the real line: the disk centred at (q, 0) with radius r > 0,
denoted by ΩD(q, r), is defined as

ΩD(q, r) :=
{
z ∈ C

∣∣ |z − q| < r
}
.

The disk region ΩD(q, r) can be characterized in form of (1.1) of an LMI region
with matrices

B =

[
−r q
q −r

]
and C =

[
0 0
−1 0

]
.

• Vertical strip: the vertical strip region of parameters h < k, denoted by ΩV (h, k),
is defined as

ΩV (h, k) :=
{
x+ iy ∈ C

∣∣ h < x < k
}
.

The vertical strip region ΩV (h, k) can be characterized in form of (1.1) of an
LMI region with matrices

B =

[
−k 0
0 h

]
and C =

1

2

[
1 0
0 −1

]
.

Note that h (resp. k) can possibly be equal to −∞ (resp. +∞) in which case
ΩV is a half space. In particular, ΩV (0,+∞) is the open left half of the complex
plane, corresponding to stable matrices for continuous LTI systems.
• Ellipsoid: the ellipse centred at (qe, 0) with horizontal radius ae and vertical
radius be, denoted by ΩE(qe, ae, be), is defined as

ΩE(qe, ae, be) :=

{
x+ iy ∈ C

∣∣ (x− qe)
2

a2e
+

y2

b2e
< 1

}
.

The ellipsoid ΩE(qe, ae, be) can be characterize in form of (1.1) of an LMI region

with matrices B =

[
−2ah −2qe
−2qe −2ae

]
and C =

[
0 (1 + ae

be
)

(1− ae

be
) 0

]
.

• Left parabolic region: the parabolic region symmetric to x-axis with centred at
(qp, 0), and curvature cp > 0, denoted by ΩPL

(qp, cp), defined as

ΩPL
(qp, cp) :=

{
x+ iy ∈ C

∣∣ y2 < − 2

cp
(x− qp)

}
.

The parabolic region ΩPL
(qp, cp) can be characterized in form of (1.1) of an LMI

region with matrices

B =

[
−1 0
0 −qp

]
and C =

1

2

 0
√

cp
2

−
√

cp
2 1

 .

The right parabolic region can be defined analogously.
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• Left hyperbolic region: the left hyperbolic region with the semi-major axis ah,
ah > 0 and semi-minor axis bh, bh > 0 and two vertices at (ah, 0) and (−ah, 0),
is denoted by ΩHyp,L(ah, bh), defined as

ΩHyp,L(ah, bh) :=

{
x+ iy ∈ C : x < 0,

x2

a2h
− y2

b2h
− 1 > 0

}
.

The hyperbolic region ΩHyp,L(ah, bh) can be characterized in form of (1.1) of an
LMI region with matrices

B =

[
0 1
1 0

]
and C =

[ 1
2ah

1
2bh

− 1
2bh

1
2ah

]
.

The right hyperbolic region can be defined analogously.
• Horizontal strip: the horizontal strip symmetric to the real axis with hight w,
denoted by ΩH(w), defined as

ΩH(w) := {x+ iy ∈ C : |y| < w} .

The horizontal strip ΩHyp,L(ah, bh) can be characterized in form of (1.1) of an
LMI region with matrices

B =

[
−w 0
0 −w

]
and C =

1

2

[
0 1
−1 0

]
.

We note that DH characterization for the sets of Ω-stable matrices was obtained
in [6], where Ω ∈ {ΩCL

(a, θ),ΩD(q, r),ΩV (h, k)}. Because of Theorem 2, we can now
extend these results for other LMI regions as well, see Table 3.1.

We conclude this section with the following remark.

Remark 2 (Non-uniqueness of the DH characterization). A remark similar to [12,
Remark 6] also holds for the non-uniqueness of a DH characterization for an Ω-stable
matrix. The non-uniqueness of the DH characterization for Ω-stable matrices can be
partly characterized by the non-uniqueness of the characteristic function of an LMI
region. For example, a different DH characterization involving two n × n LMIs is
obtained for the horizontal strip in Appendix A.

4. Application of the DH characterization of LMI regions: Nearest
Ω-stable matrix problem

The DH characterization of matrices with eigenvalues in some LMI regions can be used
to solve various problems in systems and control. For example, it was used to solve the
nearest stable matrix problem (1.3) for Hurwitz stability in [12], for Schur stability
in [10,22], and for some LMI regions (namely, vertical strips, disks, and conic sectors)
in [6]. It was also used for static-state feedback (SSF) and static-output feedback
(SOF) stabilization in [14]. Our new general characterizations (see Theorem 2) can be
used to generalize these algorithms to any LMI region Ω. In this section, we illustrate
this on the nearest Ω-stable matrix problem.
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LMI Region Constraints on JT = −J , RT = R, and Q ≻ 0

Left Conic Sector: ΩCL
(a, θ)

[
sin(θ)(aQ−1 +R) − cos(θ)J

cos(θ)J sin(θ)(aQ−1 +R)

]
≻ 0

Right Conic Sector: ΩCR
(a, θ)

[
− sin(θ)(aQ−1 +R) − cos(θ)J

cos(θ)J − sin(θ)(aQ−1 +R)

]
≻ 0

Disk: ΩD(q, r)

[
rQ−1 qQ−1 − J +R

qQ−1 + J +R rQ−1

]
≻ 0

Vertical strip: ΩV (h, k)

[
kQ−1 +R 0

0 −hQ−1 −R

]
≻ 0

Left halfplane: ΩV (−∞, k) kQ−1 +R ≻ 0
Right halfplane: ΩV (h,∞) −hQ−1 −R ≻ 0

Ellipsoid: ΩE(qe, ae, be)

[
aeQ

−1 qeQ
−1 − ae

be
J +R

qeQ
−1 + ae

be
J +R aeQ

−1

]
≻ 0

Left parabolic region: ΩPL
(qp, cp)

 Q−1 −
√

cp
2 J√

cp
2 J qpQ

−1 +R

 ≻ 0

Right parabolic region: ΩPR
(qp, cp)

 Q−1 −
√

cp
2 J√

cp
2 J −qpQ−1 −R

 ≻ 0

Left hyperbola: ΩHyp,L(ah, bh)

[ R
ah

−Q−1 − J
bh

−Q−1 + J
bh

R
ah

]
≻ 0

Right hyperbola: ΩHyp,R(ah, bh)

[
− R

ah
−Q−1 − J

bh
−Q−1 + J

bh
− R

ah

]
≻ 0

Horizontal strip: ΩH(w)

[
wQ−1 −J
J wQ−1

]
≻ 0

Table 3.1. DH parametrization of the LMI regions listed in Section 3.

4.1. Reformulation

Let A ∈ Rn×n, Ω ⊆ C be an LMI region, and consider the nearest Ω-stable matrix
problem (1.3). Then in view of Theorem 2, by setting P = Q−1, we can parameterize
the set SΩ of Ω-stable matrices in terms of matrix triplets (J,R, P−1) as follows

SΩ =
{
(J −R)P−1 ∈ Rn×n : JT = −J,RT = R,P ≻ 0,MΩ(J,R, P−1) ≺ 0

}
.

This leads to the following equivalent formulation of the nearest Ω-stable matrix prob-
lem (1.3):

inf
(J,R,P )∈DHΩ

∥A− (J −R)P−1∥2F , (4.1)

where

DHΩ =
{
(J,R, P ) ∈ (Rn×n)3 : JT = −J, RT = R, P ≻ 0, MΩ(J,R, P−1) ≺ 0

}
.

Note that the feasible set in (4.1) is convex involving only convex LMI constraints,
but the objective function is nonconvex.
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4.2. Algorithm

To solve the nonconvex optimization problem (4.1), we follow the same strategy as
in [6]. We have adapted the MATLAB code of [6] to handle all the LMI regions
summarized in Table 3.1. In a few words, the strategy in [6] uses a simple gradient
descent method, that is, it uses the update

X ← P
(
X − γ∇F (X)

)
,

where X = (J,R,Q) is the variable, F (X) = ∥A− (J −R)P−1∥2F , P is the projection
onto the feasible set DHΩ, which can be computed via semidefinite programming
(SDP), γ is a step size computed using backtracking line search (γ is reduced until F
decreases), and∇F (X) is the gradient of F at X. After each such update, the variables
(J,R), with P being fixed, are updated using SDP, which we solve using CVX [7,15].
An effective and simple initialization for the factors is to choose P = In and set (J,R)
as the optimal solution of (4.1) for P fixed.

4.3. Numerical illustrations

Our approach can tackle the nearest Ω-stable matrix problem with LMI regions in full
generality.

To illustrate the use of our algorithm, we consider a similar setting as in [6]: we
generate (J,R, P ) randomly (namely using randn(n) in MATLAB), then project it
onto the desired LMI region so that A = (J −R)P−1 is Ω-stable. Then we perturb A

using Gaussian noise: Ap = A + N where N(i, j) ∼ N(0, σ) where σ =
ϵ∥A∥F

n where

ϵ > 0 is a parameter so that the expected value of ∥N∥2F is equal to ϵ2∥A∥2F (ϵ is a
measure of the noise-to-signal ratio).

Example 1 Let us consider Ω as the intersection of

• a vertical strip between -5 and 5,
• a horizontal strip between -3 and 3,
• a left parabolic region centered at (6, 0) and curvature 1, and
• a right parabolic region centered at (−6, 0) and curvature 1.

We randomly generate a 10-by-10 matrix following the construction described above
with ϵ = 1 (the noise level is high to have several eigenvalues of A outside Ω), and run
our algorithm with the identity initialization to approximate A with an Ω-stable matrix
Ã = (J − R)Q; see Figure 4.1 for the illustration. The approximation is computed
in approximately 1 minute on a standard laptop, and the relative error is given by
∥A−Ã∥
∥A∥F

= 18.1%.

Example 2 Let us consider Ω as the intersection of

• an ellipsoid centered at (−1, 0) with horizontal radius 3 and vertical radius of 2,
• a left hyperbolic region centered with semi-majos axis ah = bh = 0.5, and
• a right conic sector centered at (−3.5, 0) with angle 3

8π.

We randomly generate a 10-by-10 matrix following the construction described above
with ϵ = 1, and run our algorithm with the identity initialization to approximate
A with an Ω-stable matrix Ã = (J − R)Q; see Figure 4.2 for the illustration. The
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Figure 4.1. Eigenvalues of A, and of its Ω-stable approximation Ã = (J − R)Q, where Ω is the intersection

of a vertical strip, a horizontal strip, and a left and a right parabolic region.

approximation is computed in approximately 1 minute on a standard laptop, and the

relative error is given by ∥A−Ã∥
∥A∥F

= 24.1%.

Figure 4.2. Eigenvalues of A, and of its Ω-stable approximation Ã = (J − R)Q, where Ω is the intersection
of an ellipse, a right conic sector and a left hyperbolic region.

Remark 3 (Code). The MATLAB code is available from https: // sites. google.

com/ site/ nicolasgillis/ code . With the code, you can run the examples presented
above (we used the random seed 2017 to make the two experiments above reproducible),
and run any other example.

Remark 4. Noferini and Poloni [23] proposed a general framework for the nearest
Ω-stable matrix problem using the Schur decomposition of A ≈ UTUT . They need
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to project the 2× 2 diagonal blocks of T onto the corresponding LMI region. In [23],
the authors gave the details only for the Hurwitz and Schur stability; however, their
method works for any region in the complex plane, that is, not necessarily an LMI
region.

5. Extended LMI regions for complex matrices

In this section, we extend the concept of LMI regions to regions that are not symmet-
ric with respect to the real axis but can be represented by LMIs involving complex
matrices. We call such regions extended LMI regions and define them as follows.

Definition 4 (Extended LMI Regions). A subset Ω ⊆ C is called an extended LMI
region if there exists a Hermitian matrix B ∈ Hm,m and C ∈ Cm×m such that

ΩC(B,C) = {z ∈ C : fΩ(z) ≺ 0} , (5.1)

where

fΩ : C 7→ Hm,m given by z 7→ fΩ(z) := B + zC + zC∗. (5.2)

The problem of generalizing LMI regions has been studied in the literature in several
works using different approaches; see, e.g., [19,25] and the references therein. The
extended LMI set ΩC(B,C) is not in general symmetric with respect to the real line.
Further, the rotation, translation and scaling of an LMI region Ω by nonzero scalar
α ∈ C is in general not an LMI region but an extended LMI region. For example, let
Ω = {z ∈ C : B+zC+zCT ≺ 0} be an LMI region as defined in (1.1) and α ∈ C\{0}.
If we denote the scaling and rotation of Ω by α with Ωθ := αΩ = {αz : z ∈ Ω} and
the translation of Ω by α with ΩT := Ω + α = {z + α ∈ C : z ∈ Ω}, then it is easy to
verify that Ωθ = ΩC(B, 1

αC) and ΩT = ΩC(B − αC − αC∗, C).
Next, we explain how the main results (Theorems 1 and 2) of Section 2 can be

generalized to extended LMI regions by using complex matrices B and C in (1.2). We
first define stability for a complex matrix A ∈ Cn×n.

Definition 5. Let Ω(B,C) ⊆ C be an extended LMI region (5.1). A matrix A ∈ Cn×n

is said to be complex Ω-stable if all eigenvalues of A lie inside Ω(B,C).

The following result is a generalization of Theorem 1 for complex Ω-stable matrices,
the proof of which is similar to the proof of Theorem 1. We have included the proof
for future reference.

Theorem 3. Let A ∈ Cn×n and Ω(B,C) be an extended LMI region in the form (5.1).
Then A is complex Ω-stable if and only if there exists a Hermitian matrix X ∈ Cn×n

such that

X ≻ 0 and MΩ(A,X) = B ⊗X + C ⊗ (AX) + C∗ ⊗ (AX)∗ ≺ 0. (5.3)

Proof. (⇐) First suppose that there exists X ∈ Cn×n satisfying (5.3). Let λ ∈ Λ(A)
and x ∈ Cn \ {0} such that x∗A = λx∗. Then

(In ⊗ x∗)MΩ(A,X)(In ⊗ x) = fΩ(λ)x
∗Xx. (5.4)

12



This implies that fΩ(λ) ≺ 0, sinceMΩ(A,X) ≺ 0 andX is Hermitian positive definite.
Thus λ ∈ Ω(B,C) and hence A is Ω-stable.

(⇒) Conversely, let A be Ω-stable. First assume that A is a diagonal matrix (denote
it by ∆) with diagonal entries λ1, . . . , λn ∈ Ω(B,C). Then

MΩ(∆, In) = diag (fΩ(λ1), . . . , fΩ(λn)) ≺ 0, (5.5)

since A is Ω-stable implies that fΩ(λi) ≺ 0 for all i = 1, . . . , n. Now suppose A ∈
Cn×n and let ∆ be the diagonal matrix containing the eigenvalues of A (counting
algebraic multiplicities). Let S be an invertible matrix such that J = S−1AS is the
Jordan matrix of A. Then there exists a squence of invertible matrices Tk such that
limk→∞ T−1

k JTk = ∆. SinceMΩ(Y, In) is a continuous function of Y , in view of (5.5),
we have that

lim
k→∞

MΩ(T
−1
k JTk, In) =MΩ(∆, In) ≺ 0.

This implies that there exists a positive integer k such that T := Tk satisfies
MΩ(T

−1JT, In) ≺ 0, or, equivalentlyMΩ(T
−1S−1AST, In) ≺ 0. Thus, we have

(In ⊗ ST )MΩ(T
−1S−1AST, In)(In ⊗ (ST )∗) =MΩ(A,X) ≺ 0,

where X := (ST )(ST )∗ is a positive definite matrix, since S and T both are invertible.
This shows the existence of X ≻ 0 such that MΩ(A,X) ≺ 0, and hence the proof.

The following result is a generalization of Theorem 2 for the complex matrices that
characterizes the set of all complex matrices with eigenvalues in an extended LMI
region in terms of complex matrix triplets (J,R,Q) ∈ (Cn×n)3 with Hermitian and
definite structures.

Theorem 4. Let Ω(B,C) ⊆ C be an extended LMI region defined by (5.1) and let
B,C ∈ Cn×n be the corresponding matrices defined in (5.2). Consider a matrix A ∈
Cn×n. Then A is complex Ω-stable if and only if A = (J−R)Q for some J,R,Q ∈ Cn×n

such that J∗ = −J , R∗ = R, Q ≻ 0, andMΩ(J,R,Q) ≺ 0, where

MΩ(J,R,Q) := B ⊗Q−1 + (C − C∗)⊗ J − (C + C∗)⊗R.

Proof. The proof follows on the lines of the proof of Theorem 2 by using Theorem 3
in place of Theorem 1.

Remark 5. For the problem of finding the nearest complex Ω-stable matrix, the
method of Noferini and Poloni [23] can easily be applied to any region Ω including
LMI regions. In fact, for the complex case, this method only requires to project a
complex number on Ω, which is typically trivial by using an orthogonal projection
onto Ω.
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Appendix A. DH characterization of the horizontal strip with two n × n
LMIs

The following theorem provides another DH characterization for the horizontal strip compared
to the one provided in Table 3.1.

Theorem 5. Let A = (J − R)Q be a DH matrix with J,R,Q ∈ Rn×n such that JT = −J ,
RT = R, and Q ≻ 0. If

−wQ−1 ≺ iJ ≺ wQ−1, (A1)

then A is ΩH(w)-stable.

Proof. Let λ = λ1 + iλ2, λ1, λ2 ∈ R be an eigenvalue of A and let x ∈ Cn \ {0} such
that (J − R)Qx = λx. This implies that x∗QJQx − x∗QRQx = (λ1 + iλ2)x

∗Qx and thus
ix∗QJQx− ix∗QRQx = (iλ1−λ2)x

∗Qx. By comparing the real and imaginary parts, we have

λ2 =
x∗Q(−iJ)Qx

x∗Qx
, (A2)

since Q ≻ 0. As J satisfies (A1), we have −wx∗Qx < x∗Q(iJ)Qx < wx∗Qx and thus from (A2)
we have that

−w <
x∗Q(−iJ)Qx

x∗Qx
< w =⇒ −w < λ2 < w. (A3)

This implies λ ∈ ΩH(w).
The converse of Theorem 5 is true when A is semisimple, that is, algebraic mulitiplicity is

equal to the geometric multiplicity for every eigenvalue λ of A. More precisely, we have the
following result.

Theorem 6. Let A ∈ Rn×n be semisimple ΩH(w)-stable matrix. Then A = (J − R)Q for
some J,R,Q ∈ Rn×n such that JT = −J , RT = R, Q ≻ 0, and

−wQ−1 ≺ iJ ≺ wQ−1. (A4)

Proof. In view of Theorem 2, A=(J − R)Q for some J,R,Q ∈ Rn×n such that JT = −J ,
RT = R, and Q ≻ 0, since A is ΩH(w)-stable. Next, we show that J satisfies (A4), or
equivalently, −wQ ≺ Q(iJ)Q ≺ wQ, since Q ≻ 0. We will prove this by showing that

x∗(Q(iJ)Q− wQ)x < 0 and x∗(Q(iJ)Q+ wQ)x > 0 for all x ∈ Cn \ {0}. (A5)

As A is semisimple, there exists an orthonormal basis of Cn consisting of eigenvectors of
A, say y1, . . . , yn. Thus, to prove (A5) for every x, it is sufficient to show it for vectors yj ,
j = 1, . . . , n. Since yj is an eigenvector of A, we have Ayj = λjyj for some eigenvalue λj of A.
This implies that (J −R)Qyj = λjyj and thus y∗jQ(J −R)Qyj = λjy

∗
jQyj . This implies that

Im(λj) =
y∗
jQ(−iJ)Qyj

y∗
jQyj

and thus we have −w <
y∗
jQ(−iJ)Qyj

y∗
jQyj

< w, since A is ΩH(w)-stable.
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